
 

Lensing bias to CMB polarization measurements of compensated
isocurvature perturbations

Chen Heinrich*

Department of Physics, University of Chicago, Chicago, Illinois 60637, USA
and Kavli Institute for Cosmological Physics, Enrico Fermi Institute,

Chicago, Illinois 60637, USA

(Received 4 September 2017; published 18 January 2018)

Compensated isocurvature perturbations (CIPs) are opposite spatial fluctuations in the baryon and dark
matter (DM) densities. They arise in the curvaton model and some models of baryogenesis. While the
gravitational effects of baryon fluctuations are compensated by those of DM, leaving no observable impacts
on the cosmic microwave background (CMB) at first order, they modulate the sound horizon at
recombination, thereby correlating CMB anisotropies at different multipoles. As a result, CIPs can be
reconstructed using quadratic estimators similarly to CMB detection of gravitational lensing. Because
of these similarities, however, the CIP estimators are biased with lensing contributions that must be
subtracted. These lensing contributions for CMB polarization measurement of CIPs are found to roughly
triple the noise power of the total CIP estimator on large scales. In addition, the cross power with temperature
and E-mode polarization are contaminated by lensing-ISW (integrated Sachs-Wolfe) correlations and
reionization-lensing correlations respectively. For a cosmic-variance-limited temperature and polarization
experiment measuring out to multipoles lmax ¼ 2500, the lensing noise raises the detection threshold by a
factor of 1.5, leaving a 2.7σ detection possible for the maximal CIP signal in the curvaton model.

DOI: 10.1103/PhysRevD.97.023513

I. INTRODUCTION

Measurements of the cosmic microwave background
(CMB) have shown that the primordial perturbations in
the Universe are mainly adiabatic [1–3]. These adiabatic
perturbations are representative of single-field inflation,
which gives all particle species the same fractional spatial
fluctuations in their number density. On the other hand, the
isocurvature perturbations arise as the difference between
the fractional perturbations of two species, indicative of
additional fields during inflation [4–9]. In particular, the
effective matter to radiation isocurvature mode has been
highly constrained by the Planck mission to be less than a
few percent of the adiabatic mode [2]. Here the effective
matter refers to the combined effect of cold dark matter
(CDM) and baryon fluctuations weighted according to their
energy density.
There is, however, one special class of perturbations that

escapes the effective matter constraint, the compensated
isocurvature perturbations (CIPs). In the CIP mode, the
CDM and baryon density fluctuations are opposite of each
other, giving no net gravitational effects, and hence no
effective matter or radiation perturbations [3,10–13]. CIPs
are therefore orthogonal to the effective matter isocurvature
and evade CMB constraints on these modes.

CIPs naturally arise in the curvaton model, as well as
some models of baryogenesis [14]. In the curvaton model,
an additional scalar field during inflation—the curvaton—
generates most of the adiabatic perturbations in lieu of the
inflaton [15–17]. Depending on different scenarios, i.e., the
epochs when the CDM and baryon number are created
relative to the curvaton decay, there would be different
amounts of CIPs produced. Those CIPs from the curvaton
model would always be correlated with the adiabatic
perturbations [15,18], and full correlation happens if the
curvaton contribution to adiabatic perturbations is domi-
nant over the inflaton. In the fully correlated case, the
largest CIP has an amplitude relative to the adiabatic
perturbations A ≈ 16.5, within the reach of the next gen-
eration of nearly cosmic-variance-limited (CVL) CMB
experiments [19].
CMB observations are a particularly clean probe for CIPs

as they are not dependent on particular assumptions such as
galaxy physics. In particular, a CIP can be reconstructed
using optimally weighted quadratic combinations of the
CMB multipoles. Even though CIPs leave no imprint in the
CMB power spectra at first order (with compensating
gravitational effects from CDM and baryons) [10,17], the
baryon density fluctuations still cause a modulation in the
damping scale and sound speed of the baryon-photon fluid.
As a result, the sound horizon at recombination varies
spatially, breaking the statistical isotropy of the CMB. This*chenhe@uchicago.edu
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variation correlates temperature and polarization anisotro-
pies of different multipole moments, providing a way for us
to reconstruct the CIPs using quadratic estimators [20,21].
Constraints on scale-invariant CIPs from WMAP data were
derived in Ref. [22] using this approach. Other works such
as Refs. [23–25] have used another effect—the smoothing
of the CMB power spectra (second order) to obtain Planck
constraints. These limits are expected to be comparable to
quadratic estimator measurements with Planck data,
whereas for the next generation of nearly CVL polarization
experiments, the quadratic estimator method will provide
the optimal signal-to-noise for constraining CIPs [23].
Using the quadratic estimator technique, the authors in

Ref. [19] forecasted that a stage-4 CMB experiment would
be able to detect the maximal CIP scenario of the curvaton
model at 3σ. This sensitivity relies crucially on the use of
nearly CVL polarization measurements at two steps: (1) in
forming the total CIP estimator, by adding four more E
and B-mode based estimators to the TT estimator, thereby
reducing the estimator noise significantly [20] and (2) in
cross-correlating the reconstructed CIP map with T and
E-mode polarization, a crucial step that improves the
sensitivity to correlated CIPs by a factor of 2 to 3 [19].
The above forecast, however, does not include the effect

of gravitational lensing which would also induce correlations
between the different CMB multipoles [26]. As the CIP
estimators are designed to be unbiased for Gaussian CMB
fields, the non-Gaussian CMB in the presence of lensing
introduces a bias to the CIP estimators that must be removed
with its error budget properly taken into account. In fact, the
lensing bias properties have been simulated and studied for
CIP measurements using CMB temperature alone and was
shown to degrade CIP detectability by a factor of 1.3 [27]. A
study of the lensing bias to CMB polarizationmeasurements
of CIPs, however, has yet to be performed.
In this paper, we simulate the lensing bias to the total

CIP estimator, composed of five single estimators—TT; TE;
EE; TB andEB—and evaluate its impact on the detectability
of fully correlated CIPs for a CVL experiment. We find that
the B-estimators TB and EB play a crucial role in reducing
the lensing bias in the total estimator. They are the least
contaminated and help reduce the bias on scales where they
dominate the total estimator. To further exploit this fact,
new optimal weights are derived directly from simulations,
reducing the total estimator noise on scales L≳ 40.
Despite the reduced bias on smaller scales, the noise

power of the total estimator on large scales is still a factor of
3 higher than without lensing contamination. In the cross
spectrum with CMB E-mode polarization, we find a
contamination coming from the large-scale correlation of
reionization and lensing potential through the TT; TE; EE
estimators. In contrast, the B-estimators TB and EB do not
reconstruct a strong lensing signal as their CIP signal
dominates over CMB multipole pairs where the lensing
signal is suppressed. Finally a similar contribution from

lensing to integrated Sachs-Wolfe (ISW) correlation con-
taminates the total CIP-temperature cross spectrum, as was
found for the TT estimator in Ref. [27]. As a result of the
lensing bias in all the CIP auto and cross spectra, the CVL
detectability of correlated CIPs is reduced by factor of 1.5.
More specifically, we simulate 4000 realizations of

lensed CMB temperature and polarization maps and
compute the CIP reconstruction in position space, using
efficient estimator forms given in the Appendix. We include
no CIP signal in the maps so as to study the noise properties
of the estimator. In order to isolate the non-Gaussian
contributions of lensing, we also perform the same
reconstruction on 4000 realizations of Gaussian CMB
maps. We find that both with or without lensing, the noise
in the total estimator can be treated to good approximation
as Gaussian distributed, obeying a χ2 and Wishart distri-
bution respectively in its auto power and cross power with
other CMB fields. We also find no evidence for correlations
between the noise power at different multipoles. The above
properties guide the construction of the Fisher matrix used
to forecast the final CIP detectability.
This paper is divided as follows. We begin by reviewing

the physics of CIPs and the relevant curvaton scenarios in
Sec. II. In Sec. III we describe the simulations and the
reconstruction pipeline and study the lensing contributions
to the single and total CIP estimator noise power spectra.
In Sec. IV, we use Fisher matrix technique to predict, for a
CVL experiment, the degradation of CIP detectability when
lensing bias is included.

II. BACKGROUND

In this section we briefly review the physics of compen-
sated isocurvature perturbations—their observable impacts
on the CMB and how they originate from the curvaton
model. We refer the reader to Refs. [19,21] for more details.

A. Compensated isocurvature perturbations

Isocurvature perturbations are the differences between
the fractional number density perturbations of different
species. With respect to the photon perturbations, the
isocurvature mode of a species i ∈ fb; c; ν; γg is defined as

Siγ ¼
δni
ni

−
δnγ
nγ

; ð1Þ

where b stands for baryons, c for cold dark matter, ν for
neutrinos, and γ for photons.
Compensated isocurvature perturbations are a special

type of isocurvature mode in which the baryon and dark
matter density fluctuations cancel

Sbγ ¼ Δ; Scγ ¼ −
ρb
ρc

Δ; Sνγ ¼ 0: ð2Þ

As a result, the CIP mode does not contribute to the
effective matter isocurvature Smγ ≡ fbSbγ þ ð1 − fbÞScγ ,
where fb ¼ ρb=ðρb þ ρcÞ.
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Because the gravitational effects of baryons and CDM
are compensated, the CIPs have no observable impacts on
the CMB power spectrum at first order. However, its baryon
perturbations lead to spatial fluctuations of the sound
speed, affecting CMB acoustic modes. Only CIPs on scales
larger than the sound horizon at recombination leave a
significant imprint; otherwise the spatially modulating
speed would average out over one or more wavelengths
as the sound waves travel until recombination. For CIPs
larger than the sound horizon, the effects on the CMB
modes are modeled with a separate-universe (SU) approach
as perturbations in the background densities

δΩb ¼ ΩbΔ; δΩc ¼ −ΩbΔ: ð3Þ

At first order in CIP, there is no observable impact on the
CMB anisotropy angular power spectra. These are calcu-
lated given the primordial curvature power spectrum Pζζ as

CXY
l ¼ 2

π

Z
k2dkTX

l ðkÞTY
l ðkÞPζζðkÞ; ð4Þ

where X; Y ∈ f ~T; ~Eg are the unlensed CMB temperature
and polarization fields, and C ~B ~B

l ¼ 0 as we assume no
primordial tensor perturbations.
We can Taylor expand to first order (as appropriate for

small CIPs) the transfer functions that encode the depend-
ence on background densities and obtain the derivative
power spectra as

CX;dY
l ¼ 2

π

Z
k2dkT ~X

l ðkÞ
dT ~Y

l

dΔ
ðkÞPζζðkÞ: ð5Þ

where X; Y ∈ fT; Eg. In the absence of tensors the B-mode
derivative power spectra start only at second order. In this
calculation, we expand upon the unlensed rather than the
lensed CMB because we are modeling the CIP effects at the
surface of last scattering, where gravitational lensing by a
large scale structure have not yet occurred.
As a three-dimensional field however, CIPs also affect

the process of reionization at a later redshift. If we ignored
reionization effects in the transfer functions used to obtain
the derivative power spectra, we would be conflating, during
the CIP reconstruction, different k-modes contributions
from the epochs of reionization and recombination to the
same reconstructed multipole L. To avoid this problem, we
roughly model the reionization signal by fixing the optical
depth τ and allowing the baryon density to modulate the
redshift of reionization. In reality, the spatial modulations of
baryon and DM densities would also impact the details of
nonlinear structure formation leading to reionization.
However, a complete modeling of such a reionization signal
from a three-dimensional CIP field is beyond the scope of
this paper, so we simply focus on the approximate effect in
the redshift of reionization.

Finally we decompose the CIPs at the surface of the last
scattering as

Δðn̂Þ ¼
X
LM

ΔLMYLM; ð6Þ

with L≲ 100 being the valid range of the SU approxima-
tion. We use quadratic reconstruction to recover each ΔLM
mode, similarly to CMB measurements of gravitational
lensing. Because of these very similarities, the CIP mea-
surements will be contaminated by the lensing signal,
which we will study in detail throughout this paper.

B. Curvaton

One possible physical origin of CIPs is the curvaton
model. In this model, the curvaton—a spectator scalar field
during inflation—is responsible for seeding most of the
adiabatic perturbations in the Universe. It later decays
and seeds isocurvature perturbations correlated with the
adiabatic perturbations [18,28–31]. In the different decay
scenarios, baryon number and DM can be generated either
as a product of the curvaton decay, nonthermally before
the decay, or out of the thermal plasma after the decay.
Depending on the scenario, the fractional perturbations in
the species will be different, leading to correlated isocur-
vature perturbations and in particular, to correlated CIPs.
If all of the adiabatic perturbations come from curvaton

contributions, the resulting CIPs will be fully correlated.
We use A to denote the relative amplitude to adiabatic
perturbations for the fully correlated CIPs

Δ ¼ Aζ: ð7Þ

Two scenarios have large enough CIPs measurable with
upcoming CMB polarization experiments: A ≈ 3Ωc=Ωb ≈
16.5 (baryon produced by curvaton decay and CDM
before decay) and A ¼ −3 (CDM by decay and baryons
before) [19].
For these fully correlated CIPs, we can exploit the

additional signal available in the cross-correlations with
the CMB anisotropies which are themselves evolved out
of the adiabatic perturbations according to Eq. (4). We
calculate the CIP power spectra CXΔ

l with X ∈ T; E;Δ
using Eq. (4) with TY

l replaced by the CIP transfer function

TΔ
l ðkÞ ¼ AjlðkD�Þ; ð8Þ

which is basically a projection onto a spherical shell at the
distance to the recombination D� using Bessel functions jl.
For the signal calculation, we now use the lensed CMB

fields T and E with reionization contributions included
as would be the case for real CMB observations. In the
relevant separate-universe limit on scales of l≲ 200, the
lensed and unlensed CMB differ negligibly. On the other
hand, reionization effects dominate the E-mode signal for
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l≲ 20. Since the CIP transfer function is only a projection
at recombination and does not model reionization signals
of CIPs, the CEΔ

L calculation here is free of unwanted
correlation from a reionization signal.
The large-scale reionization signal does correlate,

however, between the CIP reconstruction (see Sec. II A)
and the observed E-mode. In particular, through enhanced
responses in CT;dE

l0 and CE;dE
l0 , it lowers the TB and EB

estimator noise compared to the expected scale-invariant
spectrum at low-L. Since the unwanted correlation from a
large-angle reionization signal does not reflect the true
correlation between CIPs and the adiabatic perturbations
and would artificially enhance the detectability of corre-
lated CIPs, we set CT;dE

l0 and CE;dE
l0 to zero for l0 ≤ 20 in the

CIP reconstruction of Sec. III.

III. SIMULATIONS

In this section, we simulate CIP reconstruction from
CMB temperature and polarization maps, and characterize
the reconstruction noise properties with and without non-
Gaussian contributions from CMB lensing. We work with a
flat ΛCDM cosmology consistent with the Planck 2015
results [32] with a baryon density Ωbh2 ¼ 0.02225, cold
dark matter density Ωch2 ¼ 0.1198, Hubble constant
h ¼ 0.6727, scalar amplitude As ¼ 2.207 × 10−9, spectral
index ns ¼ 0.9645, reionization optical depth τ ¼ 0.079,
one massive neutrino with mν ≈ 0.06 eV, CMB temper-
ature Tcmb ¼ 2.726 K and no primordial tensor perturba-
tions. The lensing simulations are performed using CAMB1

[33], LensPix2 [34,35], and HEALPix3 [36] and a modified
version of LensPix for the CIP reconstruction that we now
describe.

A. CIP reconstruction

To test our reconstruction pipeline, we start with the case
of Gaussian CMB fields, for which we can analytically
predict the expected noise properties. Since we are only
interested in the reconstruction noise, we take the ampli-
tude of the CIP signal to be zero in all of our simulations.
Using Lenspix, we draw independent unit Gaussian

variates that linearly combine to form CMB multipoles
T̂lm; Êlm; B̂lm for nsim ¼ 4000 realizations. We use the
Cholesky decomposition of the covariance matrix [37]
so the correlations are consistent with the lensed power
spectra CTT

l , CEE
l , CBB

l and CTE
l (by parity CTB

l ¼
CEB
l ¼ 0), and call these Gaussian CMB maps for short.

Note that in the absence of tensor perturbations CBB
l

arises purely from the gravitational lensing of E-modes.
Furthermore, these maps do not contain any non-
Gaussian correlations that a proper lensing procedure of

pixel-remapping would produce. For these simulations, we
have chosen Nside ¼ 2048 and lmax ¼ 3900, and verified
that these settings are sufficient for accurately evaluating
estimators with modes to lmax ¼ 2500.
Next, we compute single CIP estimators using quadratic

pairs XZ of the CMB temperature and polarization
fields. The harmonic-space form of the minimum-variance
estimators is [19,21]

Δ̂XZ
LM ¼ NXZ

L

X
lml0m0

X�
l0m0Zlmg

XZ;mv
Lll0 ξLMlml0m0 ; ð9Þ

where XZ ∈ fTT; TE; EE; TB; EBg,

½NXZ
L �−1 ¼

X
ll0

Gll0S
L;XZ
ll0 gXZ;mv

Lll0 ð10Þ

is the normalization required for an unbiased estimator in
the absence of lensing,

ξLMlml0m0 ¼ ð−1Þm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Lþ 1Þð2lþ 1Þð2l0 þ 1Þ

4π

r

×
�

l L l0

−m M m0

�
; ð11Þ

Gll0 ¼
ð2lþ 1Þð2l0 þ 1Þ

4π
; ð12Þ

SL;XZll0 are response functions given by Table I4, where

sH
L
ll0 ≡

�
l L l0

s 0 −s

�
ð13Þ

are Wigner 3j coefficients.
The weight functions that minimize the single estimator

variance are given by

TABLE I. The response function SL;XZll0 of the various two-point
observables in Eq. (14).

XZ SL;XZll0
lþ l0 þ L

TT ðCT;dT
l0 þ CT;dT

l Þ
0
HL

ll0
even

TE CT;dE
l0 2

HL
ll0 þ CE;dT

l 0
HL

ll0
even

EE ðCE;dE
l0 þ CE;dE

l Þ
2
HL

ll0
even

TB −iCT;dE
l0 2

HL
ll0 odd

EB −iCE;dE
l0 2

HL
ll0 odd

1CAMB: http://camb.info.
2LensPix: http://cosmologist.info/lenspix/.
3HEALPix: http://healpix.sourceforge.net.

4We note a sign flip in SL;EBll0 in front of the CB;dB
l term in

Table II of Ref. [19]. This term does not enter our calculations
here as we do not consider tensors.
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gXZ;mv
Lll0 ¼ SL;XZ�ll0 CXX

l CZZ
l0 − ð−1Þlþl0þLSL;XZ�l0l CXZ

l CXZ
l0

CXX
l0 CZZ

l CXX
l CZZ

l0 − ðCXZ
l CXZ

l0 Þ2 ;

ð14Þ

where we use the lensed CMB power spectra.
In practice, we compute efficiently the single estimators

as a product of two maps using the position space
expressions given in the Appendix. They are equivalent
to the harmonic space forms above for all except the TE
estimator. In the TE case, the position space form can
only be achieved if we dropped the second term in the
denominator of the minimum-variance weight function
gTE;mv
Lll0 , so that for TE only, we have instead

ḡXZLll0 ¼
SL;XZ�ll0 CXX

l CZZ
l0 − ð−1Þlþl0þLSL;XZ�l0l CXZ

l CXZ
l0

CXX
l0 CZZ

l CXX
l CZZ

l0
ð15Þ

in the sum as well as in the normalization for unbiasedness.
As a result, the position space TE estimator no longer
has minimum variance. We show however, in the Appendix
that the estimator normalization, variance and covariances
change negligibly.
The single estimators are then combined to form the

total CIP estimator

Δ̂LM ¼
X
α

wα
LΔ̂

α
LM; ð16Þ

with inverse-covariance weights given by

wα
L ¼ NL

X
β

ðM−1
L Þα;β; ð17Þ

where

N−1
L ≡X

αβ

ðM−1
L Þα;β ð18Þ

is the normalization that is required to make the total
estimator unbiased. The variance of the total estimatorMΔΔ

L
is the same as the normalization

MΔΔ
L ¼ NL ð19Þ

as long as we consistently use

gXZLll0 ¼
(
ḡXZLll0 ; α ¼ TE;

gXZ;mv
Lll0 ; other

ð20Þ

in the covariance matrix

ML
XZ;X0Z0 ¼ NXZ

L NX0Z0
L

X
ll0

Gll0gXZLll0 ½CXX0
l0 CZZ0

l gX
0Z0�

Lll0

þ ð−1Þlþl0þLCXZ0
l0 CX0Z

l gX
0Z0�

Ll0l �: ð21Þ

This result of the covariance matrix follows from Eq. (9)
where the CMB fields are taken to be built from Gaussian
variates as described above.
Just like the single estimators, the total estimator is

unbiased for Gaussian CMB realizations. In the absence of
a true CIP signal, we expect hΔ̂LMi ¼ 0 for the recon-
structed maps. The power spectra however, have noise
associated with the cosmic variance of the CMB modes.
We study the noise distribution by first building the power
spectrum estimators in each realization

M̂XY
L ¼ 1

2Lþ 1

X
M

X̂�
LMŶLM; ð22Þ

where X; Y ∈ fΔ; T; E; Bg. Then we obtain the average
hM̂XY

L i over 4000 realizations, verifying that the lensed
spectraCXY

L are recovered for CMB fieldsX; Y ∈ fT; E; Bg.
For the CIP reconstruction, we plot the mean (middle

blue line), 68% and 95% confidence bands (shaded bands)
of the M̂ΔΔ

L , M̂TΔ
L and M̂EΔ

L distribution in Figs. 1, 2 and 3
respectively. The mean agrees well with the ensemble
average MΔΔ

L of Eq. (18) and MTΔ
L ¼ MEΔ

L ¼ 0 (black
dashed). In Fig. 1, the total estimator noise power is
dominated by white noise contributions from TT; TE; EE
at low-L and by scale-invariant noise decreasing as ∼L−2 of
theTB,EB estimators at high-L. Note that the addition of the
E-mode polarization contributes to reducing the noise from
TT alone by about a factor of 3. For the cross correlations, the
improvement fromaddingpolarization estimators is reflected
in the relatively smaller width of the distribution.
At high-L, the relative scaling of L−2 for the B estimators

are key to improving the total estimator noise. This scaling

FIG. 1. Total CIP estimator noise power M̂ΔΔ
L for Gaussian

CMB maps. Shown are the mean (middle solid line), 68% and
95% confidence bands (shaded) of 4000 realizations of the total
estimator in the absence of a CIP signal. The mean matches the
theoretical expectation MΔΔ

L [Eq. (18)]. The confidence bands of
M̂ΔΔ

L match those from a χ2 distribution (solid lines) given the
mean, expected for Gaussian estimator noise. For reference we
show a true correlated CIP signal with A ¼ 16.5 (dashed line).
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comes from the fact that the B and non-B estimators
respond to CMB multipoles pairs l, l0 with odd and even
lþ l0 þ L respectively. More specifically, the response
function is proportional to

HL
ll0 ∝

�
sinð2φll0 Þ; lþ l0 þ L odd;

cosð2φll0 Þ; lþ l0 þ L even;
ð23Þ

where φll0 is the angle between the l and l0 sides of the
triangle, so in the squeezed limit l; l0 ≫ L where the CIP
signal dominates, NXB

L ∼ ðHL
ll0 Þ−2 ∼ L−2. In Fig. 4, we plot

the weights from the non-B vs B estimators in black and
red respectively. For the Gaussian CMB considered here
(solid lines), the total estimator becomes dominated by B
estimators for L≳ 50.
The total CIP estimator is a linear combination of the

single estimators, which are formed out of products of
Gaussian variates. Although the individual product pairs
are not Gaussian distributed, by the central limit theorem
the linear combination of many such pairs tends to a
Gaussian distribution given large enough numbers of pairs.
To test the Gaussian approximation, we follow Ref. [27] to
compute the expected χ2 and Wishart distributions for the
auto and cross spectra respectively. In Figs. 1, 2 and 3, we
find that the confidence bands of the actual distribution
(shaded) agree well with the Gaussian expectation (solid
lines), indicating that the Gaussian noise is indeed a good
approximation for the total estimator on Gaussian CMB
maps. We have also verified that the same conclusion holds
for the single estimators.

B. Lensing noise

We now perform the same CIP reconstruction on a set
of properly lensed CMB maps containing non-Gaussian

FIG. 2. Total CIP estimator noise cross power M̂TΔ
L given

Gaussian CMB maps. Shown are the mean (middle solid line),
68% and 95% confidence bands (shaded) of 4000 realizations of
the estimator in the absence of a CIP signal. The mean matches
closely the expectation MTΔ

L ¼ 0 (dotted line). The confidence
bands of M̂TΔ

L match those from a Wishart distribution (solid
lines) given the mean, expected for Gaussian estimator noise. For
reference we show a true correlated CIP signal with A ¼ 16.5
(dashed line).

FIG. 3. Total CIP estimator noise cross power M̂EΔ
L for

Gaussian CMB maps. Shown are the mean (middle solid line),
68% and 95% confidence bands (shaded) of 4000 realizations of
the estimator in the absence of a CIP signal. The mean matches
closely the expectation MEΔ

L ¼ 0 (dotted line). The confidence
bands of M̂EΔ

L match those of a Wishart distribution (solid lines)
given the mean, expected for Gaussian estimator noise. For
reference we show a true correlated CIP signal with A ¼ 16.5
(dashed line).

FIG. 4. Inverse-covariance weights wα
L for the B-based

(α ¼ TB; EB, red) and non-B based (α ¼ TT; TE; EE, black)
estimators. For Gaussian CMB (solid lines), the total estimator is
dominated by the TB; EB at high-L because of their nearly scale-
invariant noise ∼L−2; at low-L, the non-B estimators dominate
with their white noise. The crossing point happens at around
L ∼ 50. For the properly lensed CMB (shaded), the non-Gaussian
contributions from lensing to the estimator variance are more
significant for the non-B than for the B estimators, so the former
stops dominating at a small L ≲ 25.
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lensing contributions and study the resulting additional
contribution to the estimator noise spectra.
To do so, we first simulate 4000 correlated realizations of

the unlensed ~Tlm, ~Elm and lensing potential ϕlm consistent
with C ~T ~T

l , C ~E ~E
l and Cϕϕ

l , and the cross-correlations C ~T ~E
l ,

C
~Tϕ
l and C

~Eϕ
l as supplied by CAMB using the method

described in Sec. III A. Note that ~Blm ¼ 0 in the absence of
tensor perturbations.
Using Lenspix, the pixel positions in the unlensed

temperature maps and polarization tensor maps ~Pij (formed
from its EB decomposition [26]) are deflected according to
the gradient of the lensing potential [26,38,39]

T̂ðn̂Þ ¼ ~Tðn̂þ∇ϕÞ; ð24Þ

P̂ijðn̂Þ ¼ ~Pijðn̂þ∇ϕÞ; ð25Þ

yielding the lensed maps T̂lm, Êlm and B̂lm ≠ 0.
Like CIPs in the SU approximation, the large-scale

lenses also correlate the CMB anisotropies of different
multipoles, albeit through a different mechanism remap-
ping the angular positions of the CMB. As a result the CIP
estimators pick up extra lensing signal and are no longer
unbiased when averaged over CMB realizations with a
fixed lensing potential

hΔ̂α
LMijϕ ≠ 0; hΔ̂LMijϕ ≠ 0: ð26Þ

Once averaged over random realizations of the lensing
potentials we still recover hΔ̂α

LMi ¼ hΔ̂LMi ¼ 0. The esti-
mator power spectra, however, will retain the non-Gaussian
lensing contributions through the connected part of the
trispectrum

hM̂ΔαΔα

L i ¼ Mα;α
L þ T α;α

L : ð27Þ

In Fig. 5, we plot in absolute ratio of non-Gaussian
lensing contributions to those expected from Gaussian
CMB for the noise power of single estimators

rαL ¼
���� T α;α

L

Mα;α
L

����: ð28Þ

The ratio is roughly flat for each single estimator on scales
relevant for the SU limit L≲ 100, meaning that the lensing
induced noise has a similar spectrum shape to the Gaussian
CMB contributions. Just like TT, the lensing contamination
in TE and EE are about the same level as the Gaussian
CMB part. In contrast, the lensing noise in TB and EB are
only at the percent and 10% level of the Gaussian CMB
contributions respectively.
Given that TB and EB have significantly less lensing

noise, it is desirable to weigh the single estimators
accordingly to lensing-included covariance derived from

simulations in lieu of Eq. (21). These weights are shown as
shaded regions in Fig. 4. We see that the B-estimators now
have slightly higher weight at low-L and start dominating
the total at a smaller L ∼ 25.
Using these weights, we form the total estimator and plot

the mean (middle blue line), 68% and 95% confidence
bands (shaded bands) of its noise power M̂ΔΔ

L , M̂TΔ
L and

M̂EΔ
L in Figs 6, 7 and 8 respectively. At L≲ 40, the total

noise power is about 3 times larger with non-Gaussian
lensing contributions than without. Beyond this range, the
lensing contributions to the mean becomes comparable
or smaller than the Gaussian CMB contributions as the
B-estimators dominate the weight. Note that for L≳ 100
the bias reduces significantly, but this is also beyond the
SU limit where little CIP signal exists.
Compared to the zero expectation for Gaussian CMB,

the cross-spectra M̂TΔ
L here acquires a lensing-ISW [37,

40–42] contamination on large scales. This is because in
the absence of a CIP signal, the estimator is basically
reconstructing a lensing signal. Similarly, the M̂EΔ

L mean
now oscillates with a similar shape to CEϕ

L , which is
dominated by the correlation between large-scale reioniza-
tion signal in E and low-z matter density fluctuations
contributing to the lensing potential [37].
Even with the non-Gaussian lensing contributions, the

approximation that the total estimator noise is Gaussian still
holds. We find good agreement between the 68% and 95%
confidence bands of the distribution and the Gaussian noise
expectations (solid lines). We have also verified that the
same is true for the single estimators.
To further test the Gaussian noise properties, we verify

that the covariance of the noise power have negligible off

FIG. 5. Absolute ratio rαL of non-Gaussian lensing to Gaussian
CMB contributions to the noise power spectrum of single
estimators. The TB, EB estimators (lower lines) are much less
contaminated (only at 1% and 10% level respectively) by the non-
Gaussian contributions of lensing. For the non-B estimators
(upper lines), the lensing and Gaussian CMB noises are of the
same order for L≲ 100.
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diagonal correlations. We start by building the covariance
matrix

Cij ≡ hM̂ΔΔ
Li

M̂ΔΔ
Lj

i − hM̂ΔΔ
Li

ihM̂ΔΔ
Lj

i ð29Þ
and plot the correlation matrix

Rij ¼
Cijffiffiffiffiffiffiffiffiffiffiffiffiffi
CiiCjj

p ð30Þ

FIG. 7. Total CIP estimator noise cross power M̂TΔ
L for lensed

CMB maps. Shown are the mean (middle solid line), 68% and
95% confidence bands (shaded) of 4000 realizations of the total
estimator in the absence of a CIP signal. The contamination to the
zero expectation of Gaussian CMB (dotted line) comes from the
lensing-ISW correlation [37,40–42]. The confidence bands again
match the expectations for Gaussian estimator noise (solid lines),
i.e. those of a Wishart distribution for the cross power given the
mean. For reference we show a true correlated CIP signal with
A ¼ 16.5 (dashed line).

FIG. 8. Total CIP estimator noise cross power M̂EΔ
L for lensed

CMB maps. Shown are the mean (middle solid line), 68% and
95% confidence bands (shaded) of 4000 realizations of the
estimator in the absence of a CIP signal. The contamination to
the zero expectation from Gaussian CMB (dotted line) is
dominated by large-scale correlation between E-polarization
and the lensing potential [37]. The confidence bands again match
the expectations for Gaussian estimator noise (solid lines), i.e.
those of a Wishart distribution for the cross power given the
mean. For reference we show a true correlated CIP signal with
A ¼ 16.5 (dashed line).

FIG. 6. Total CIP estimator noise power M̂ΔΔ
L for lensed CMB

maps. Shown are the mean (middle solid line), 68% and
95% confidence bands (shaded) of 4000 realizations of the total
estimator in the absence of a CIP signal. On large scales L≲ 40,
the mean is about 3 times larger with lensing effects than without
(dotted line). The lensing bias is smaller for smaller scales
because there the total estimator starts to be dominated by the
less biased B estimators. Despite the non-Gaussian contributions
of lensing to CMB fields, the distribution of the CIP estimator
noise power match closely the χ2 expectation for Gaussian
estimator noise (solid lines) even out to the 95% tail. For
reference we show a true correlated CIP signal with A ¼ 16.5
(dashed line).

FIG. 9. Correlation matrix Rij between different multipoles Li

and Lj of the total CIP noise power M̂ΔΔ
L using 4000 realizations

of the lensed CMB maps. The off diagonal correlations have
a negligible mean of R ¼ 3.5 × 10−4 with an rms fluctuation
σR ¼ 0.016 consistent with the finite sample size.
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in Fig. 9 where the off diagonal elements in the range
L ∈ ½2; 200� do not exceed 0.065. They fluctuate around
a negligible mean of R ¼ 3.5 × 10−4 with a root-mean-
square (rms) of σR ¼ 0.016. The scaling of the rms is
consistent with what is expected from a finite size of
realizations, i.e. σR ∼ n1=2sim as shown in Fig. 10.

IV. FORECASTS

We have seen previously that for CVL measurements of
CMB temperature and polarization out to lmax ¼ 2500, the
noise power of the total CIP estimator noise is nearly 3
times larger with than without lensing contributions for at
least up to L ∼ 40. In this section, we evaluate the impact of
this additional lensing noise on CIP detectability by means
of Fisher matrix techniques.
We have shown that the CIP estimator noise, even with

non-Gaussian effects from lensing, can still be treated as
nearly Gaussian distributed and with no correlation
between different multipoles of the noise power. Under
these approximations, we construct the Fisher matrix with a
single entry to evaluate the error σA in the CIP correlation
amplitude A from the observed CIP power spectra

σ−2A ¼
XLmax

L¼2

X
XΔ;X0Δ

∂CXΔ
L

∂A ðC−1
L ÞXΔ;X0Δ

∂CX0Δ
L

∂A ; ð31Þ

where X;X0 ∈ fΔ; T; Eg and CL is the covariance matrix

CXΔ;X0Δ
L ¼

~CXX0
L

~CΔΔ
L þ ~CXΔ

L
~CX0Δ
L

2Lþ 1
: ð32Þ

The covariance here includes both the CIP sample variance
and the reconstruction noise from Gaussian or lensed CMB
simulations of Sec. III, i.e.

~CΔΔ
L ¼ CΔΔ

L þ hM̂ΔΔ
L i; ð33Þ

~CXΔ
L ¼ CXΔ

L þ hM̂XΔ
L i; ð34Þ

~CXX0
L ¼ CXX0

L ; ð35Þ

where X;X0 ∈ fT; Eg. Note that σA depends on the strength
of the signal through the CIP sample variance, so we
evaluate the detection threshold at A ¼ 2σA.
Taking Lmax ¼ 100 as appropriate for the separate-

universe approximation, we obtain 2σA ¼ 12.2 for the
total estimator with CVL measurements of temperature
and polarizations. This is a factor of 1.5 higher than the
2σA ¼ 8.3 threshold if lensing was not accounted for.
For comparison, the less optimal weighting for the total
estimator with Eq. (21) would have given a threshold that is
1.8 times higher. Note also that if we were to look for
uncorrelated CIPs with CTΔ

L ¼ CEΔ
L ¼ 0 and the same CΔΔ

L ,
lensing noise would raise the 2σ threshold by a slightly
worse factor of 1.8, from 24 to 44. Finally, with lensing
noise accounted for in the total CIP estimator, the 4σ
projection for the maximal CIP A ≈ 16.5 scenario of the
curvaton model reduces to 2.7σ for a cosmic-variance-
limited experiment.
Taking Lmax ¼ 200, we find that a smaller degradation

with lensing, a factor of 1.2 from 2σA ¼ 6.2 to 7.5, due to
decreasing lensing bias after Lmax ∼ 100. In addition,
because precisely measuring the large-angle E-modes
could be difficult with ground-based experiments, we
evaluate the detection threshold dropping all the correla-
tions at L < 30. With Lmin ¼ 30, we find that the maximal
CIP case would still be detected at 2.3σ with 2σA ¼ 14.4
for the CVL experiment.

V. CONCLUSION

In this paper, we evaluated for the first time the lensing
bias to measurements of CIPs using CMB polarization and
quantified the impact of lensing on CIP detectability for a
cosmic-variance-limited experiment.
We found that the polarization-included total CIP esti-

mator has a noise power that is about 3 times larger with
than without lensing contamination on L≲ 40. In the
cross-correlations of CIPs with temperature and E mode
polarization, lensing contamination follows the shape of
ISW-lensing and reionization-lensing correlations on large
scales. In addition, we found that TB and EB estimators
are much less biased by lensing (only at the 1% and 10%
level respectively in the auto noise power), even though
they have larger noise from the cosmic variance of the
CMB modes alone. So measuring the cross-spectra with

FIG. 10. The rms fluctuations σR (solid) in the off diagonal
correlations Rij of CIP estimator noise power vs the number of
simulations nsim for multipoles L ∈ ½2; 200�. The scaling of σR
agrees well with that expected from finite sampling n−1=2sim
(dotted), again showing no hints of significant deviations from
Gaussian estimator noise.
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B-estimators individually could provide a consistency test
for determining the sign of correlated CIPs.
Although the lensing contributions to the CMB fields are

non-Gaussian, we showed that their effect on the quadratic
estimators is to good approximation Gaussian noise in the
total as well as the single estimators. We further tested the
Gaussian noise assumption by showing that the different
multipoles of the noise power are negligibly correlated at
< 0.065 over the range L ∈ ½2; 200�. The off diagonal
elements in the correlation matrix fluctuate around a mean
of R ¼ 3.5 × 10−4 with rms consistent with the finite size
of simulations.
While the use of polarization dramatically increases the

CIP detectability compared to temperature only measure-
ments, there is still a relative degradation for polarization
measurements once lensing noise is included. Treating the
estimator noise as Gaussian independent noise for each
multipole of the noise power, we found that the detection
threshold of a CVL experiment is increased by a factor of
1.5 from 2σA ¼ 8.3 to 12.2 because of lensing, correspond-
ing to 2.7σ detection for the maximal CIP A ≈ 16.5
scenario of the curvaton model. Taking Lmin ¼ 30 gives
2σA ¼ 14.4 which is still a 2.3σ for the A ≈ 16.5 scenario.
Here we have used CVL measurements of temperature and
polarization out to l ¼ 2500 and fixed all other cosmological
parameters.
The next step in assessing the CIP detectability for a

realistic CMB experiment would be to simulate the lensing
bias dependence on the instrument noise and sky masks.
For a nearly CVL experiment like the CMB Stage-4, one
might expect a similar factor of degradation to the CVL
experiment, bringing down the 3σ projection to about 2σ
for the largest CIP signal A ≈ 16.5 in the curvaton model.
In addition, whilewe conservatively considered CMBmulti-
poles up to l ¼ 2500, future CMBmeasurements ofE-mode
polarization have the potential of reaching out to l ¼ 4000.
It would be interesting to study the impact on quadratic
estimators with nonuniform lmax for T,E andB observations
as well as its implications for lensing contamination.
An alternative route for removing lensing contamination

to CIPs may be to use delensed CMB maps [43–45]. One
concern while using internally delensed maps with a
lensing template reconstructed from the CMB itself is
the partial removal of the CIP signal during the delensing
process. As the B-estimators for lensing would also be the
least contaminated by CIPs, one may use the EB estimator
with optimized weights to construct the lensing template.
The prospect of the delensing method for CMB measure-
ments of CIPs still remains to be evaluated in comparison to
the debiasing method presented in this paper.
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APPENDIX: EFFICIENT CIP ESTIMATOR
IN POSITION SPACE

The harmonic-space forms for the CIP estimators are
computational costlyOðl3maxÞ. For CIP reconstruction in this
paper, we adopt the more efficient Oðl2maxÞ position-space
forms listed below:

Δ̂TT
LM ¼ NTT

L

Z
dn̂Y�

LMðn̂Þ0ATT0A
TdT
TT ; ðA1Þ

Δ̂EE
LM ¼ 1

2
NEE

L

Z
dn̂Y�

LMðn̂Þðþ2AEE−2A
EdE
EE þ c:c:Þ; ðA2Þ

Δ̂TE
LM ¼ NTE

L

Z
dn̂Y�

LMðn̂Þ

×

�
1

2
½ðþ2AEE−2A

TdE
TT − þ2ATE−2A

TdE
ET Þ þ c:c:�

þ ½0ATT0A
EdT
EE − 0AET0A

EdT
TE �

�
; ðA3Þ

Δ̂TB
LM ¼ 1

2
NTB

L

Z
dn̂Y�

LMðn̂Þðiþ2ABB−2A
TdE
TT þ c:c:Þ; ðA4Þ

Δ̂EB
LM ¼ 1

2
NEB

L

Z
dn̂Y�

LMðn̂Þðiþ2ABB−2A
EdE
EE þ c:c:Þ; ðA5Þ

where

�sAXX0 ¼
X
lm

CXX0
l

CXX
l CX0X0

l

Xlm�sYlm; ðA6Þ

�sA
YdZ
XX0 ¼

X
lm

CXX0
l

CXX
l CX0X0

l

CY;dZ
l Xlm � sYlm; ðA7Þ

½NXZ
L �−1 ¼

X
ll0

Gll0S
L;XZ
ll0 gXZ;Lll0 ; ðA8Þ

and

gXZLll0 ¼
� ḡXZLll0 ; α ¼ TE;

gXZ;mv
Lll0 ; other:

ðA9Þ
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These expressions are mathematically equivalent to the harmonic-space forms except for the TE estimator, which cannot
be written as a product of maps unless we drop the second term in the denominator of gTE;mv

Lll0

gTE;mv
Lll0 ∝

1

CTT
l0 CEE

l CTT
l CEE

l0 − ðCTE
l CTE

l0 Þ2 → ḡTELll0 ∝
1

CTT
l0 CEE

l CTT
l CEE

l0
: ðA10Þ

This approximation leads to only percent level differences in the estimator normalization and its covariance with other
estimators (<1.1% and < 0.3% respectively), and to a vanishing fractional difference < 0.03% in the TE estimator
variance.
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